Thursday, June 11, 2015

Int of xe^x^2dx

Evaluate `int x e^(x^2)dx` :


Let `u=x^2 ` so du=2xdx. Then:


`int x e^(x^2)dx=1/2int e^u du `


`=1/2e^u +C `


Substituting back for u we get:


`int xe^(x^2)dx=1/2e^(x^2)+C `


---------------------------------------------------------------------------


We can check by taking the derivative:


`d/(dx)[1/2e^(x^2)+C]=(1/2)(e^(x^2))(2x)=xe^(x^2) ` as required.

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...