Friday, June 5, 2015

`int` `e^(3x)/(e^x+e^(3x)) dx`

`int e^(3x)/(e^x+e^(3x))dx`


To solve this, let's simplify first the integrand.


`=int e^(3x)/(e^x(1+e^(2x)))dx`


`= int (e^x * e^(2x))/(e^x(1+e^(2x)))dx`


`= int e^(2x)/(1+e^(2x))dx`


Then, apply u-substitution method. 


`u=1+e^(2x)`


`du = e^(2x)*2dx`


`(du)/2=e^(2x)dx`


Expressing the integral in terms of u, it becomes:


`= int 1/(1+e^(2x)) * e^(2x)dx`


`= int 1/u * (du)/2`


`= 1/2 int 1/u du`


`=1/2ln|u|+ C`


And, substitute back `u = 1+e^(2x)` .


`=1/2ln|1+e^(2x)|+C`



Therefore, `int e^(3x)/(e^x+e^(3x))dx = 1/2ln|1+e^(2x)| + C` .

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...