Sunday, November 21, 2010

`int (ln(x))^2/x dx` Find the indefinite integral.

`int (ln(x))^2/xdx`


To solve, apply u-substitution method. 


Let,


`u= ln x`


Then, differentiate it.


`du=1/xdx`


Plug-in them to the integral.


`int (ln(x))^2/xdx`


`= int (ln(x))^2 * 1/xdx`


`=int u^2 du`


Then, apply the formula, `int x^ndx=x^(n+1)/(n+1)+C` .


`=u^3/3+C`


And, substitute back `u=lnx` .


`= (ln(x))^3/3+C`



Therefore, `int (ln(x))^2/x dx = (ln(x))^3/3+C` .

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...