`int (ln(x))^2/xdx`
To solve, apply u-substitution method.
Let,
`u= ln x`
Then, differentiate it.
`du=1/xdx`
Plug-in them to the integral.
`int (ln(x))^2/xdx`
`= int (ln(x))^2 * 1/xdx`
`=int u^2 du`
Then, apply the formula, `int x^ndx=x^(n+1)/(n+1)+C` .
`=u^3/3+C`
And, substitute back `u=lnx` .
`= (ln(x))^3/3+C`
Therefore, `int (ln(x))^2/x dx = (ln(x))^3/3+C` .
No comments:
Post a Comment