`int (4x^3+3)/(x^4+3x)dx`
To solve, apply u-substitution method. So let:
`u= x^4+3x`
Then, differentiate it.
`du=(4x^3+3)dx`
Plug-in them to the integral.
`int (4x^3+3)/(x^4+3x)dx`
`= int 1/(x^4+3x)* (4x^3+3)dx`
`=int1/udu`
Then, apply the integral formula `int 1/xdx = ln|x| + C` .
`= ln|u| + C`
And, substitute back `u=x^4+3x` .
`=ln |x^4+3x|+C`
Therefore, `int (4x^3+3)/(x^4+3x)dx = ln|x^4+3x|+C` .
No comments:
Post a Comment