Thursday, November 11, 2010

`int (4x^3 + 3)/(x^4 + 3x) dx` Find the indefinite integral.

`int (4x^3+3)/(x^4+3x)dx`


To solve, apply u-substitution method. So let:


`u= x^4+3x`


Then, differentiate it.


`du=(4x^3+3)dx`


Plug-in them to the integral. 


`int (4x^3+3)/(x^4+3x)dx`


`= int 1/(x^4+3x)* (4x^3+3)dx`


`=int1/udu`


Then, apply the integral formula  `int 1/xdx = ln|x| + C` .


`= ln|u| + C`


And, substitute back  `u=x^4+3x` .


`=ln |x^4+3x|+C`



Therefore,  `int (4x^3+3)/(x^4+3x)dx = ln|x^4+3x|+C` .

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...