We are asked to find `(dy)/(dx) ` if ` x^2-4xy+y^2=4 `
Note that this is difficult to write as a function of x, so we take the derivative implicitly:
Working term by term:
`d/(dx)( x^2)=2x `
`d/(dx)( -4xy)=-4y-4x(dy)/(dx) ` using the product rule
`d/(dx)(y^2)=2y(dy)/(dx) `
So we get `2x-4y-4x(dy)/(dx)+2y(dy)/(dx)=0 `
`(dy)/(dx)(2y-4x)=4y-2x `
`(dy)/(dx)=(4y-2x)/(2y-4x)=(2y-x)/(y-2x) `
-------------------------------------------------------
`(dy)/(dx)=(x-2y)/(2x-y) `
No comments:
Post a Comment