Wednesday, March 30, 2016

What is the frequency of the light emitted by atomic Hydrogen according to Balmer's formula with n = 2 and m = 6? Is 7.31*10^14 Hz, the correct...

Balmer's formula gives the wavelength of light emitted by the hydrogen atom. If the wavelength is represented by L, the formula gives L = K*m^2/(m^2 - n^2) where m and n are integers and K is a constant. The constant K = 3645.6*10^-7 for n = 2.


If n = 2 and m = 6, the wavelength L = 4.1013*10^-7 m.


The frequency (f) and wavelength (L) of a wave are related f*L = c, where c is the speed of light or 299792458 m/s. by for K.


This gives the frequency of the wave with wavelength 4.1013*10^-7, f = 299792458/(4.1013*10^-7) = 7.31*10^14 Hz.


You have arrived at the correct value of the frequency of light for the given values of m and n.

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...