`F(x) =int_0^(e^(2x)) ln(t+1)dt`
`F'(x)=?`
Take note that if the function has a form
`F(x) = int_a^(u(x)) f(t)dt`
its derivative is
`F'(x)=f(u(x))*u'(x)`
Applying this formula, the derivative of the function
`F(x) =int_0^(e^(2x)) ln(t+1)dt`
will be:
`F'(x) = ln(e^(2x)+1)*(e^(2x))'`
`F'(x)=ln(e^(2x)+1)*e^(2x)*2`
`F'(x)=2e^(2x)ln(e^(2x)+1)`
Therefore, the derivative of the given function is `F'(x)=2e^(2x)ln(e^(2x)+1)` .
No comments:
Post a Comment