Monday, July 18, 2016

`F(x) = int_0^(e^(2x)) ln(t + 1) dt` Find the derivative.

`F(x) =int_0^(e^(2x)) ln(t+1)dt`


`F'(x)=?`


Take note that if the function has a form


`F(x) = int_a^(u(x)) f(t)dt`


its derivative is


`F'(x)=f(u(x))*u'(x)`


Applying this formula, the derivative of the function


`F(x) =int_0^(e^(2x)) ln(t+1)dt`


will be:


`F'(x) = ln(e^(2x)+1)*(e^(2x))'`


`F'(x)=ln(e^(2x)+1)*e^(2x)*2`


`F'(x)=2e^(2x)ln(e^(2x)+1)`



Therefore, the derivative of the given function is `F'(x)=2e^(2x)ln(e^(2x)+1)` .

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...