Wednesday, March 25, 2015

`y = ln((1 + e^x)/(1 - e^x))` Find the derivative.

Find the derivative of `y=ln((1+e^x)/(1-e^x)) ` :


Use a property of the natural logarithm to rewrite as:


`y=ln(1+e^x)-ln(1-e^x) `


If u is a differentiable function of x, then ` d/(dx)ln(u)=(du)/u ` so


`(dy)/(dx)=e^x/(1+e^x)-(-e^x)/(1-e^x)`


Subtracting the fractions we get:


`(dy)/(dx)=(e^x(1-e^x)-(-e^x)(1+e^x))/((1+e^x)(1-e^x)) `


Clearing the parantheses and adding like terms we get:


`(dy)/(dx)=(2e^x)/(1-e^(2x)) `

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...