Sunday, August 31, 2014

`y = e^(2x) tan(2x)` Find the derivative.

Find the derivative if `y=e^(2x)tan(2x) ` :


Let u=2x and rewrite as:


`y=e^utanu `


Use the product rule noting that `d/(du)e^u=e^udu,d/(du)tanu=sec^2udu ` :


`(dy)/(du)=e^udutanu+e^usec^2udu `


Since u=2x, du=2 so we can rewrite as:


`(dy)/(dx)=2e^(2x)tan(2x)+2e^(2x)sec^(2)2x `


` (dy)/(dx)=2e^(2x)(tan(2x)+sec^2(2x)) `

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...