Find the derivative if `y=e^(2x)tan(2x) ` :
Let u=2x and rewrite as:
`y=e^utanu `
Use the product rule noting that `d/(du)e^u=e^udu,d/(du)tanu=sec^2udu ` :
`(dy)/(du)=e^udutanu+e^usec^2udu `
Since u=2x, du=2 so we can rewrite as:
`(dy)/(dx)=2e^(2x)tan(2x)+2e^(2x)sec^(2)2x `
` (dy)/(dx)=2e^(2x)(tan(2x)+sec^2(2x)) `
No comments:
Post a Comment