`F(x)=int_pi^(lnx) cos(e^t)dt`
`F'(x)=?`
Take note that if the function has a form
`F(x)=int_a^(u(x)) f(t)dt`
its derivative is
`F'(x)=f(u(x))*u'(x)`
Applying this formula, the derivative of the function
`F(x)=int_pi^(ln(x)) cos(e^t)dt`
will be:
`F'(x) = cos(e^(ln(x))) *(ln(x))'`
`F'(x) = cos(e^(ln(x)))*1/x`
`F'(x)= cos(x)*1/x`
`F'(x)= cos(x)/x`
Therefore, the derivative of the given function is `F'(x)=cos(x)/x` .
No comments:
Post a Comment