Wednesday, October 12, 2011

if y= log{cot(pi/4+x/2)}. find dy/dx

`y=log{cot(pi/4+x/2)}`


Let `u=cot(pi/4+x/2)`


Apply the chain rule,


`dy/dx=d/(du)(log_10(u))d/dx(cot(pi/4+x/2))`


Now apply the common derivative,


`d/(du)(log_10(u))=1/(u ln(10))`


Now let's evaluate `d/dx(cot(pi/4+x/2))` by chain rule,


Let `u=pi/4+x/2`


`d/dx(cot(pi/4+x/2))=d/(du)(cot(u))d/dx(pi/4+x/2)`


Use the common derivative `d/(du)(cot(u))=-csc^2(u)`


and `d/dx(pi/4+x/2)=1/2`


`d/dx(cot(pi/4+x/2))=-csc^2(pi/4+x/2)*1/2`


and `dy/dx=(1/(u ln(10)))(-1/2csc^2(pi/4+x/2))`


Substitute back `u=cot(pi/4+x/2)`


`dy/dx=(1/(cot(pi/4+x/2) ln(10)))(-1/2csc^2(pi/4+x/2)`


`=-1/(2ln(10))(csc^2(pi/4+x/2))/cot(pi/4+x/2)`


We can further simplify as `csc^2(theta)=1/(sin^2(theta))`


and `cot(theta)=cos(theta)/(sin(theta))`


`:.dy/dx=-1/(2ln(10)) 1/(sin^2(pi/4+x/2))(sin(pi/4+x/2)/(cos(pi/4+x/2)))`


`=-1/(2ln(10)sin(pi/4+x/2)cos(pi/4+x/2))`


This can be simplified combining terms.


` -1/(ln(10)2sin(pi/4+x/2)cos(pi/4+x/2)) `


`=-1/(ln(10)sin(2(pi/4+x/2))) `


`=-1/(ln(10)sin(pi/2+x))=-1/(ln(10)cos(x)) `


This is the answer: `(-sec(x))/ln(10) `

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...