Wednesday, September 7, 2011

`int (cos(3 theta) - 1) d theta` Find the indefinite integral.

`int (cos(3theta)-1)d theta=`


Use additivity of integral: `int (f(x)+g(x))dx=int f(x)dx+int g(x)dx.` `int cos(3theta)d theta-int d theta=`


Since the second integral is easy `int d theta=theta+C` we will concentrate on the first integral. To solve the first integral we will make substitution `u=3theta,` `du=3d theta=>d theta=(du)/3`


`int cos(3theta)d theta=1/3int cos u du=1/3sin u +C=`


Return the substitution.


`1/3sin(3theta)+C`


Therefore, the final solution is


`1/3sin(3theta)-theta+C` 

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...