Tuesday, December 15, 2009

`int (x^3 - 3x^2 + 5)/(x - 3) dx` Find the indefinite integral.

`int (x^3-3x^2+5)/(x-3)dx`


To solve, divide the numerator by the denominator.


`= int (x^2 + 5/(x-3))dx`


Express it as sum of two integrals.


`= int x^2dx + int 5/(x-3)dx`


For the first integral, apply the formula `int x^n dx = x^(n+1)/(n+1) + C` .


`= x^3/3 + C + int 5/(x-3)dx`


For the second integral, apply u-substitution method.


Let 


`u = x-3`


Differentiate the u.


`du = dx`


Then, plug-in them to the second integral.


`=x^3/3+C +5 int 1/(x-3)dx`


`=x^3/3+C + 5int1/udu`


Apply the integral formula `int 1/xdx = ln|x| + C` .


`= x^3/3 + 5ln|u| + C`


And, substitute back `u = x - 3` .


`= x^3/3+ 5ln|x-3| + C`



Therefore, `int (x^3-3x^2+5)/(x-3)dx = x^3/3+5ln|x-3|+C` .

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...