`int (x^3-3x^2+5)/(x-3)dx`
To solve, divide the numerator by the denominator.
`= int (x^2 + 5/(x-3))dx`
Express it as sum of two integrals.
`= int x^2dx + int 5/(x-3)dx`
For the first integral, apply the formula `int x^n dx = x^(n+1)/(n+1) + C` .
`= x^3/3 + C + int 5/(x-3)dx`
For the second integral, apply u-substitution method.
Let
`u = x-3`
Differentiate the u.
`du = dx`
Then, plug-in them to the second integral.
`=x^3/3+C +5 int 1/(x-3)dx`
`=x^3/3+C + 5int1/udu`
Apply the integral formula `int 1/xdx = ln|x| + C` .
`= x^3/3 + 5ln|u| + C`
And, substitute back `u = x - 3` .
`= x^3/3+ 5ln|x-3| + C`
Therefore, `int (x^3-3x^2+5)/(x-3)dx = x^3/3+5ln|x-3|+C` .
No comments:
Post a Comment