To apply u-substitution , we let `u = sqrt(x)-3` .
Then ` du = 1/(2sqrt(x) dx` .
Rearrange `du = 1/(2sqrt(x)) dx` into `dx =2sqrt(x) du`
Substituting `dx=2sqrt(x) du` and `u =sqrt(x)-3` :
`int sqrt(x)/(sqrt(x)-3)dx = int sqrt(x)/u*2sqrt(x) dx`
Simplify: `sqrt(x)*sqrt(x) = x`
`int sqrt(x)/u *2sqrt(x) du = int (2x)/u du`
Rearrange `u=sqrt(x)-3` into `sqrt(x)=u+3`
Squaring both sides of`sqrt(x)=u+3` then
`x=u^2+6u+9`
`int (2x)/u du = 2 int (u^2+6u+9)/u du`
`= 2 int (u^2/u + 6u/u + 9/u) du`
`= 2 int (u + 6 + 9/u) du `
`=2 *(u^2/2+6u+9lnabs|u|) +C`
Substitute u =sqrt(x)-3:
`2 *(u^2/2+6u+9ln|u|)+C =2 *((sqrt(x)-3)^2/2+6(sqrt(x)-3)+9ln|(sqrt(x)-3)|)+C`
` =(sqrt(x)-3)^2+12(sqrt(x)-3)+18ln|(sqrt(x)-3)| +C`
` = x-6sqrt(x)+9+12sqrt(x)-36 +18ln|sqrt(x)-3|+C`
`= x + 6sqrt(x)-27 +18ln|sqrt(x)-3|+C`
No comments:
Post a Comment