Thursday, April 5, 2012

`h(x) = ln(2x^2 + 1)` Find the derivative of the function.

`h(x) = ln (2x^2+1)`


First, apply the formula:


`(ln u)' = 1/u * u'`


So, the derivative of the function will be:


`h'(x) =1/(2x^2+1)*(2x^2+1)'`


To take the derivative of the inner function, apply the formula:


`(x^n)' = n* x^(n-1)`


`(c)' = 0`


So h'(x) will become:


`h'(x) =1/(2x^2+1) * (2*2x + 0)`


`h'(x) = 1/(2x^2+1) * 4x`


`h'(x)=(4x)/(2x^2+1)`



Therefore, the derivative of the given function is `h'(x)=(4x)/(2x^2+1)` .

No comments:

Post a Comment

find square roots of -1+2i

We have to find the square root of `-1+2i` i.e. `\sqrt{-1+2i}` We will find the square roots of the complex number of the form x+yi , where ...