`h(x) = ln (2x^2+1)`
First, apply the formula:
`(ln u)' = 1/u * u'`
So, the derivative of the function will be:
`h'(x) =1/(2x^2+1)*(2x^2+1)'`
To take the derivative of the inner function, apply the formula:
`(x^n)' = n* x^(n-1)`
`(c)' = 0`
So h'(x) will become:
`h'(x) =1/(2x^2+1) * (2*2x + 0)`
`h'(x) = 1/(2x^2+1) * 4x`
`h'(x)=(4x)/(2x^2+1)`
Therefore, the derivative of the given function is `h'(x)=(4x)/(2x^2+1)` .
No comments:
Post a Comment